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Abstract

We consider the stochastic wave equation on the real line driven by space–time white noise and with
irregular initial data. We give bounds on higher moments and, for the hyperbolic Anderson model, explicit
formulas for second moments. These bounds imply weak intermittency and allow us to obtain sharp bounds
on growth indices for certain classes of initial conditions with unbounded support.
c⃝ 2014 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper, we will study the following stochastic wave equation:

∂2

∂t2 − κ2 ∂
2

∂x2


u(t, x) = ρ(u(t, x))Ẇ (t, x), x ∈ R, t ∈ R∗

+,

u(0, ◦) = g(◦),
∂u

∂t
(0, ◦) = µ(◦),

(1.1)

where R∗
+ =]0,∞[, Ẇ is space–time white noise, ρ(u) is globally Lipschitz, κ > 0 is the speed

of wave propagation, g and µ are the (deterministic) initial position and velocity, respectively,
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and ◦ denotes the spatial dummy variable. The linear case, ρ(u) = λu, λ ≠ 0, is called the
hyperbolic Anderson model [19]. If ρ(u) = λ


ς2 + u2, then we call (1.1) the near-linear

Anderson model.
This equation has been extensively studied during last two decades by many authors: see

e.g., [4,6,7,32,37] for some early work, [16,18,37] for an introduction, [19,20] for asymptotic
properties of moments, [12,15,17,21,26–28,33–35] for the stochastic wave equation in the spa-
tial domain Rd , d > 1, [22,36] for regularity of the solution, [2,3] for the stochastic wave equa-
tion with values in Riemannian manifolds, and [11,30,31] for wave equations with polynomial
nonlinearities.

In this paper, we consider initial data with very little regularity. In particular, we assume that
the initial position g belongs to L2

loc (R), the set of locally square integrable Borel functions,
and the initial velocity µ belongs to M (R), the set of locally finite Borel measures. Denote the
solution to the homogeneous equation by

J0(t, x) :=
1
2
(g(x + κt)+ g(x − κt))+ (µ ∗ Gκ(t, ◦))(x), (1.2)

where

Gκ(t, x) =
1
2

H(t)1[−κt,κt](x)

is the wave kernel function. Here, H(t) is the Heaviside function (i.e., H(t) = 1 if t ≥ 0 and
0 otherwise), and “∗” denotes convolution in the space variable. Regarding the stochastic pde
(spde) (1.1), we interpret it in the integral (mild) form:

u(t, x) = J0(t, x)+ I (t, x),

where

I (t, x) :=


[0,t]×R

Gκ (t − s, x − y) ρ (u (s, y))W (ds, dy) .

We call I (t, x) the stochastic integral part of the random field solution. This stochastic integral
is interpreted in the sense of Walsh [37].

The first contribution of this paper concerns estimates and exact formulas for moments of the
random field solution to (1.1) (for the stochastic heat equation, this type of result has recently
been obtained in [9]). Consider, for instance, the case where ρ(u)2 = λ2(ς2

+ u2) for some λ
and ς ∈ R, and let In(·) be the modified Bessel function of the first kind of order n, or simply
the hyperbolic Bessel function [29, 10.25.2, p. 249]:

In(x) :=

 x

2

n ∞
k=0


x2/4

k
k!Γ (n + k + 1)

, (1.3)

(see [25,38] for its relation with the wave equation). Define two kernel functions K(t, x) :=

K(t, x; κ, λ) and H(t) := H(t; κ, λ) as follows:

K (t, x; κ, λ) :=


λ2

4
I0

λ2

(κt)2 − x2


2κ

 if − κt ≤ x ≤ κt,

0 otherwise,

(1.4)
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and

H (t; κ, λ) := (1 ⋆ K) (t, x) = cosh

|λ|

κ/2t


− 1, (1.5)

where “⋆” denotes the convolution in both space and time variables (note that the second equality
in (1.5) is proved in Lemma 3.7). For t ′ ≥ t ≥ 0 and x, x ′

∈ R, define two functions

Tκ

t, t ′, x


:=


t + t ′

2
−

|x |

2κ


∧ t


1{|x |≤κ(t+t ′)}, (1.6)

Xκ

x, x ′, t


:=


(x + x ′)/2 − κt/2


∨ x, if x ≤ x ′,

(x + x ′)/2 + κt/2

∧ x, if x > x ′,

(1.7)

where x ∨ y := max(x, y) and x ∧ y := min(x, y). Clearly, Tκ(t, t, 0) = t and Xκ(x, x, 0) = x .
Theorem 2.3 yields in particular the exact formulas in the next two corollaries.

Corollary 1.1 (Constant Initial Data). Suppose that ρ2(x) = λ2(ς2
+ x2) with λ ≠ 0. Let H(t)

be defined as above. If g(x) ≡ w and µ(dx) = w dx with w,w ∈ R, then for all t ′ ≥ t ≥ 0 and
x, x ′

∈ R, setting T = Tκ(t, t ′, x − x ′),

E

u(t, x)u(t ′, x ′)


= −ς2

−
4κw2

λ2 + (w + κwt)(w + κwt ′)− (w + κwT )2

+


w2

+ ς2
+

4κw2

λ2


cosh

√
κ|λ|
√

2
T


+

2
√

2κww
|λ|

sinh
√

κ|λ|
√

2
T


. (1.8)

Corollary 1.2 (Dirac Delta Initial Velocity). Suppose that ρ2(x) = λ2(ς2
+ x2) with λ ≠ 0.

Let H(t) and K(t, x) be defined as above. If g ≡ 0 and µ = δ0, then for all t ′ ≥ t ≥ 0 and
x, x ′

∈ R, setting T = Tκ

t, t ′, x − x ′


and X = Xκ(x, x ′, t ′ − t),

E

u(t, x)u


t ′, x ′


= λ−2 K (T, X)+ ς2 H (T ) .

In particular, ∥u(t, x)∥2
2 = λ−2 K(t, x)+ ς2 H(t).

These two corollaries are proved in Section 3.4. With our moment formulas, it becomes
possible to study very precisely two asymptotic properties of the stochastic wave equation. The
first one is the mathematical intermittency property, which is defined, as in [5], via the moment
Lyapunov exponents. Recall that the upper and lower moment Lyapunov exponents for constant
initial data are defined as follows:

m p(x) := lim sup
t→+∞

log E

|u(t, x)|p


t

, m p(x) := lim inf
t→+∞

log E

|u(t, x)|p


t

.

If the initial conditions are constants, then m p(x) =: m p and m p(x) =: m p do not depend
on x . Mathematical intermittency is the property that m p = m p =: m p and m1 < m2/2 <

· · · < m p/p < · · ·. It is implied by the property that m2 > 0 and m1 = 0 (see [5, Definition
III.1.1, p. 55]), which is called full intermittency, while weak intermittency, defined in [24] and
[13, Theorem 2.3] is the property m2 > 0 and m p < +∞, for all p ≥ 2.
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Dalang and Mueller showed in [19] that for the wave equation in spatial domain R3 with
spatially homogeneous colored noise, with ρ(u) = u and constant initial position and velocity,
m p and m p are both bounded, from above and below respectively, by some constant times p4/3.
For the stochastic wave equation in spatial dimension 1 with space–time white noise, Conus
et al. [13] show that if the initial position and velocity are bounded and measurable functions,
then the moment Lyapunov exponents satisfy m p ≤ Cp3/2 for p ≥ 2, and m2 ≥ c(κ/2)1/2 for
positive initial data. The difference in the exponents – 3/2 versus 4/3 in the three dimensional
wave equation – reflects the distinct nature of the driving noises. Recently Balan and Conus [1]
studied this problem when the noise is Gaussian, spatially homogeneous and behaves in time like
a fractional Brownian motion with Hurst index H > 1/2.

As a direct consequence of our moment bounds, we recover the result m p ≤ Cp3/2 for p ≥ 2
of [13] (see Theorem 2.7). We extend their lower bound on the upper Lyapunov exponent m2
to the lower Lyapunov exponent, by showing that m2 ≥ c(κ/2)1/2. In the case of the Anderson
model ρ(u) = λu, we show that m2 = m2 = |λ| (κ/2)1/2.

The second application of our moment formulas in Theorem 2.3 is to study the growth indices,
defined by Conus and Khoshnevisan in [14] as follows

λ(p) := sup


α > 0 : lim sup

t→∞

1
t

sup
|x |≥αt

log E

|u(t, x)|p > 0


, (1.9)

λ(p) := inf


α > 0 : lim sup

t→∞

1
t

sup
|x |≥αt

log E

|u(t, x)|p < 0


. (1.10)

As discussed in [14], these growth indices give information about the location of exponentially
large values of u(t, x), and, in particular, how quickly they propagate away from the origin.
In [14, Theorem 5.1], it was shown that if ρ(0) = 0, then for initial data with exponential decay
at ±∞, 0 < λ(p) ≤ λ(p) < +∞, for all p ≥ 2. Since Gκ(t, x) has support in the space–time
cone |x | ≤ κt , it is clear that if the initial data have compact support and ρ(0) = 0, then any high
peaks related to intermittency must remain in a space–time cone. Hence λ(p) ≤ λ(p) ≤ κ . In
[14, Theorem 5.1], it is shown that if the initial data consist of functions with compact support,
then λ(p) = λ(p) = κ for all p ≥ 2. On the other hand, if the initial data are not compactly
supported and do not decay at ±∞, for instance, if g(◦) ≡ 1, then λ(p) = λ(p) = +∞. We
shall show that the rate of decay at ±∞ needed to have values of λ(p) and λ(p) in ]κ,+∞[ is
exponential. In fact, our moment estimates allow us to show in particular (see the more precise
statement in Theorem 2.9) that if the initial position and velocity are bounded below by ce−β|x |

and above by Ce−β̃|x |, with β ≥ β̃, then

κ


1 +

l2

8κβ2

 1
2

≤ λ(p) ≤ λ(p) ≤ κ


1 +

L2

8κβ̃2

 1
2

,

for certain explicit constants l and L . In the case of the Anderson model ρ(u) = λu and for
p = 2 and β = β̃, we obtain

λ(2) = λ(2) = κ


1 +

λ2

8κβ2

1/2

.

Since the growth indices of order two depend on the asymptotic behavior of E(u(t, x)2) as
t → ∞, this equality highlights, in a somewhat surprising way, how the initial data significantly
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affect (through the decay rate β) the behavior of the solution for all time, despite the presence of
the driving noise.

This paper is organized as follows. We state our main results in Section 2. The proofs of the
existence, uniqueness and moment bounds are given in Section 3, along with the proof of weak
intermittency. Finally, we prove the results on the growth indices in Section 4. We note that this
paper corresponds mostly to Section 3 of the unpublished notes [10].

2. Main results

Let {Wt (A) : A ∈ Bb (R) , t ≥ 0} be a space–time white noise defined on a complete
probability space (Ω ,F , P), where Bb (R) is the collection of Borel sets with finite Lebesgue
measure. Let (Ft , t ≥ 0) be the standard filtration generated by this space–time white noise,
i.e., Ft = σ (Ws(A) : 0 ≤ s ≤ t, A ∈ Bb (R)) ∨ N , where N is the σ -field generated by all
P-null sets in F . We use ∥·∥p to denote the L p(Ω)-norm. A random field (Y (t, x), (t, x) ∈

R∗
+ × R) said to be adapted if for all (t, x) ∈ R∗

+ × R, Y (t, x) is Ft -measurable, and it is said to
be jointly measurable if it is measurable with respect to B(R∗

+ × R)× F .

Definition 2.1. A random field (u(t, x), (t, x) ∈ R+ × R), is called a solution to (1.1) if

(1) u(t, x) is adapted and jointly measurable;
(2) for all (t, x) ∈ R∗

+ × R,

G2
κ(·, ◦) ⋆ ∥ρ(u(·, ◦))∥2

2


(t, x) < +∞, where ⋆ denotes the

simultaneous convolution in both space and time variables (and · denotes the time dummy
variable);

(3) for all (t, x) ∈ R+ × R, u(t, x) = J0(t, x)+ I (t, x) a.s., where

I (t, x) =


R+×R

Gκ (t − s, x − y) ρ (u (s, y))W (ds, dy) ; (2.1)

(4) the function (t, x) → I (t, x) from R+ × R into L2(Ω) is continuous.

Remark 2.2. In the case of the stochastic heat equation, one often requires that (t, x) → u(t, x)
is L2-continuous. However, this condition is not appropriate for the stochastic wave equation with
irregular initial data. Indeed, consider the stochastic wave equation (1.1) with g ∈ L2

loc (R) and
µ = 0. In this case, J0(t, x) = 1/2 (g(κt + x)+ g(κt − x)). Since the initial position g may not
be defined for every x , the function (t, x) → J0(t, x) may not even be defined for certain (t, x).
Therefore, for these (t, x), u(t, x) may not be well-defined (see Example 2.5). Nevertheless,
as we will show later, I (t, x) is always well defined for each (t, x) ∈ R+ × R, and it has a
continuous version under our assumptions. For the stochastic heat equation with deterministic
initial conditions, this problem does not arise because in that equation, (t, x) → J0(t, x) is
continuous over R∗

+ × R thanks to the smoothing effect of the heat kernel.

2.1. Existence, uniqueness and moment bounds

Assume that ρ : R → R is globally Lipschitz continuous with Lipschitz constant Lipρ > 0.
In particular, there will be constants Lρ > 0 and ς ≥ 0 such that

ρ(x)2 ≤ L2
ρ


ς2

+ x2

, for all x ∈ R. (2.2)

Note that Lρ ≤
√

2Lipρ and the inequality may be strict. In cases where we want to bound
the second moment from below, we will sometimes assume that for some constants lρ > 0
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and ς ≥ 0,

ρ(x)2 ≥ l2ρ

ς2

+ x2

, for all x ∈ R. (2.3)

We shall also give particular attention to the Anderson model, which is a special case of the
following near-linear growth condition: for some constants ς ≥ 0 and λ ≠ 0,

ρ(x)2 = λ2

ς2

+ x2

, for all x ∈ R. (2.4)

Recall the definition of K(t, x; κ, λ) and H(t; κ, λ) in (1.4) and (1.5), respectively. In certain
cases, we will replace λ by another value, and we use the following conventions:

K (t, x) := K (t, x; κ, λ) , K (t, x) := K

t, x; κ,Lρ


,

K (t, x) := K

t, x; κ, lρ


, K (t, x) := K


t, x; κ, ap,ς z pLρ


, p ≥ 2,

where the constant ap,ς (≤ 2) is defined by

ap,ς :=


2(p−1)/p ς ≠ 0, p > 2,
√

2 ς = 0, p > 2,
1 p = 2,

(2.5)

and z p is the optimal universal constant in the Burkholder–Davis–Gundy inequality (see
[14, Theorem 1.4]) and so z2 = 1 and z p ≤ 2

√
p for all p ≥ 2. Note that the kernel func-

tion K (t, x) depends on the parameters p and ς , which is usually clear from the context. The
same conventions will apply to H (t) ,H (t) ,H (t) and H (t).

In the next theorem, the existence and uniqueness results extend, in the spirit of [9], the clas-
sical existence results [6,7,37] as well as the more recent results of [13]. In fact, our assumptions
on g and µ are essentially minimal. However, the main contribution concerns the bounds on
moments of the solution, and, in particular, the explicit formulas (2.10) and (2.11). Recall that
M (R) is the set of locally finite (signed) Borel measures over R.

Theorem 2.3. Suppose that g ∈ L2
loc (R) , µ ∈ M (R) and ρ is Lipschitz continuous with linear

growth (2.2). Define K,H as above, and Tκ , Xκ as in (1.6), (1.7). Then the stochastic wave equa-
tion (1.1) has a random field solution in the sense of Definition 2.1: u(t, x) = J0(t, x)+ I (t, x)
for t > 0 and x ∈ R. Moreover,

(1) u(t, x) is unique (in the sense of versions);
(2) (t, x) → I (t, x) is L p(Ω)-continuous for all integers p ≥ 2.

Furthermore, for all t ′ ≥ t ≥ 0, x, x ′
∈ R, by denoting T := Tκ


t, t ′, x − x ′


and

X := Xκ(x, x ′, t ′ − t), the following moment estimates hold:
(3) For all even integers p ≥ 2,

∥u(t, x)∥2
p ≤

J 2
0 (t, x)+


J 2

0 ⋆ K

(t, x)+ ς2 H(t) if p = 2,

2J 2
0 (t, x)+


2J 2

0 ⋆
K p


(t, x)+ ς2H p(t) if p > 2,

(2.6)

and

E

u(t, x)u(t ′, x ′)


≤ J0(t, x)J0(t

′, x ′)+


J 2

0 ⋆ K

(T, X)+ ς2 H (T ) ; (2.7)



L. Chen, R.C. Dalang / Stochastic Processes and their Applications 125 (2015) 1605–1628 1611

(4) If ρ satisfies (2.3), then

∥u(t, x)∥2
2 ≥ J 2

0 (t, x)+


J 2

0 ⋆ K

(t, x)+ ς2 H(t), (2.8)

and

E

u(t, x)u(t ′, x ′)


≥ J0(t, x)J0(t

′, x ′)+


J 2

0 ⋆ K

(T, X)+ ς2 H (T ) ; (2.9)

(5) In particular, if ρ(u)2 = λ2

ς2

+ u2

, then

∥u(t, x)∥2
2 = J 2

0 (t, x)+


J 2

0 ⋆ K

(t, x)+ ς2 H(t), (2.10)

and

E

u(t, x)u(t ′, x ′)


= J0(t, x)J0(t

′, x ′)+


J 2

0 ⋆ K

(T, X)+ ς2 H (T ) . (2.11)

Remark 2.4. We note that the structure of the formula (2.10) and the structure of the bounds
in (2.6) and (2.8) are similar to those in [9, Theorem 2.4]. In fact, this structure is generic and
applies in principle to a wide class of spde’s of the form Lu(t, x) = ρ(u(t, x))Ẇ (t, x), where L

is a pde operator such as L =
∂
∂t −

∂2

∂x2 (heat), L =
∂2

∂t2 −
∂2

∂x2 (wave) and so on. Of course, L must
satisfy suitable conditions. The kernel functions K and H here have very different behaviors than
those in [9], and this will lead to the different behavior of Lyapunov exponents and of growth
indices in the stochastic heat and wave equations. Related formulas and bounds will be given for
the space-fractional heat equation in a forthcoming paper.

The proofs of Theorem 2.3 and its two Corollaries 1.1 and 1.2 are given at the end of Section 3.
Notice that formula (2.10) shows that ∥u(t, x)∥2 depends in a monotone way on the function
J 2

0 (·, ◦).

Example 2.5. Let g(x) = |x |
−1/4 and µ ≡ 0. Clearly, g ∈ L2

loc (R) and

J 2
0 (t, x) =

1
4


1

|x + κt |1/4
+

1

|x − κt |1/4

2

.

The function J 2
0 (t, x) equals +∞ on the characteristic lines x = ±κt that originate at (0, 0),

where the singularity of g occurs. Nevertheless, the stochastic integral part I (t, x) is well-defined
for all (t, x) ∈ R∗

+ × R and the random field solution u(t, x) in the sense of Definition 2.1 does
exist according to Theorem 2.3.

Example 2.6. Let g(x) = |x |
−1/2 and µ ≡ 0. Clearly, g ∉ L2

loc (R). So Theorem 2.3 does
not apply. In this case, the solution u(t, x) is well-defined outside of the triangle κt ≥ |x |. But
because

J 2
0 (t, x) =

1
4


1

|x + κt |1/2
+

1

|x − κt |1/2

2

,

and this function is not locally integrable over domains that intersect the characteristic lines
x = ±κt , the random field solution exists only in the two “triangles” κt ≤ |x |. Another example
is shown in Fig. 1.
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Fig. 1. When g(x) =


n∈N 2−n

|x − n|

−1/2
+ |x + n|

−1/2


and µ ≡ 0, the random field solution u(t, x) is only

defined in the unshaded regions and in particular not for t > tc = (2κ)−1.

2.2. Weak intermittency

Recall that u(t, x) is said to be fully intermittent if the Lyapunov exponent of order 1 vanishes
and the lower Lyapunov exponent of order 2 is strictly positive: m1 = 0 and m2 > 0. The solution
is called weakly intermittent if m2 > 0 and m p < +∞ for all p ≥ 2.

Theorem 2.7. Assuming (2.2), suppose that g(x) ≡ w and µ(dx) = wdx with w,w ∈ R. Then
we have the following two properties:

(1) For all even integers p ≥ 2,

m p ≤


Lρ

√
2κ p3/2 if ς ≠ 0 and p > 2,

Lρ
√
κ p3/2 if ς = 0 and p > 2,

Lρ

κ/2 if p = 2.

(2.12)

(2) If (2.3) holds for some lρ ≠ 0, and if |ς |+|w|+|w| ≠ 0 with ww ≥ 0, then m2 ≥ |lρ |
√
κ/2

and so u(t, x) is weakly intermittent.
(3) If ρ(u)2 = λ2(ς2

+ u2), with λ ≠ 0, and if |ς | + |w| + |w| ≠ 0, then m2 = m2 = |λ|
√
κ/2.

Remark 2.8. We do not know if a lower bound of the form m p ≥ Cp3/2 holds. For this kind of

bound in the stochastic wave and heat equations in R+ × R3 in the case where ρ(u) = λu and
the driving noise is spatially colored, see [19].

2.3. Growth indices

Recall the definition of λ(p) and λ(p) in (1.9) and (1.10). Define

Mβ
G (R) :=


µ ∈ M (R) :


R

eβ|x |
|µ|(dx) < +∞


, β ≥ 0.

We use the subscript “+” to denote the subset of non-negative measures. For example, M+ (R)
is the set of non-negative Borel measures over R and Mβ

G,+ (R) = Mβ
G (R) ∩ M+ (R).

The next theorem improves the result of [14, Theorem 5.1] by giving sharp bounds on λ(p)
and λ(p) in the case where ρ(0) = 0 and the initial data have exponential decay at ±∞.

Theorem 2.9. We have the following:

(1) Suppose that |ρ(u)| ≤ Lρ |u| with Lρ ≠ 0 and the initial data satisfy the following two
conditions:
(a) The initial position g(x) is a Borel function such that |g(x)| is bounded from above by

some function ce−β1|x | with c > 0 and β1 > 0 for almost all x ∈ R;
(b) The initial velocity µ ∈ Mβ2

G (R) for some β2 > 0.
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Then for all even integers p ≥ 2,

λ(p) ≤


κ


1 +

a2
p,ς z2

pL2
ρ

8κ(β1 ∧ β2)2

1/2

if p > 2,

κ


1 +

L2
ρ

8κ(β1 ∧ β2)2

1/2

if p = 2.

(2.13)

(2) Suppose that |ρ(u)| ≥ lρ |u| with lρ ≠ 0 and the initial data satisfy the following two
conditions:
(a′) The initial position g(x) is a non-negative Borel function bounded from below by some

function c1e−β ′

1|x | with c1 > 0 and β ′

1 > 0 for almost all x ∈ R;
(b′) The initial velocity µ(dx) has a density µ(x) that is a non-negative Borel function

bounded from below by some function c2e−β ′

2|x | with c2 > 0 and β ′

2 > 0 for almost
all x ∈ R.

Then

λ(p) ≥ κ


1 +

l2ρ

8κ

β ′

1 ∧ β ′

2

2
1/2

, for all even integers p ≥ 2. (2.14)

In particular, we have the following two special cases:

(3) For the hyperbolic Anderson model ρ(u) = λu with λ ≠ 0, if the initial velocity µ satisfies
all Conditions (a), (b), (a′) and (b′) with β := β1 ∧ β2 = β ′

1 ∧ β ′

2, then

λ(2) = λ(2) = κ


1 +

λ2

8κβ2

1/2

. (2.15)

(4) If lρ |u| ≤ |ρ(u)| ≤ Lρ |u| with lρ ≠ 0 and Lρ ≠ 0, and both g(x) and µ(x) are non-negative
Borel functions with compact support, then

λ(p) = λ(p) = κ, for all even integers p ≥ 2.

Note that for Conclusion (3), clearly, β ′

i ≥ βi , i = 1, 2. Hence, the condition β1∧β2 = β ′

1∧β ′

2
has only two possible cases: β ′

1 = β1 ≤ β2 ≤ β ′

2 and β ′

2 = β2 ≤ β1 ≤ β ′

1.

Remark 2.10. As mentioned in the introduction, Theorem 2.9 shows that the initial data signif-
icantly affect the behavior of the solution for all time. This theorem also shows that in addition
to depending on the rate of decay at ±∞ of the initial data, the behavior of the growth indices
also depends on the rate of growth of the nonlinearity of ρ. However, when the initial data are
compactly supported, the rate of growth of the non-linearity ρ plays no role.

3. Proof of Theorem 2.3

In this section, we first give some key technical results, then we prove Theorem 2.3.

3.1. Computing the kernel function K(t, x)

Define the backward space–time cone:

Λ(t, x) = {(s, y) ∈ R+ × R : 0 ≤ s ≤ t, |y − x | ≤ κ(t − s)} , (3.1)
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Fig. 2. Change variables for the case where |x | ≤ κt .

so the wave kernel function can be written Gκ (t − s, x − y) =
1
2 1{Λ(t,x)} (s, y). The change of

variables u = κs − y, w = κs + y will play an important role: see Fig. 2.
For all n ∈ N∗ and (t, x) ∈ R∗

+ × R, define

L0(t, x) := λ2G2
κ(t, x) and Ln(t, x) = (L0 ⋆ · · · ⋆ L0)(t, x),

where there are n + 1 convolutions of L0(·, ◦) in the second equation.

Proposition 3.1. For all n ∈ N, and (t, x) ∈ R∗
+ × R,

Ln(t, x) =

λ
2n+2


(κt)2 − x2

n
23n+2(n!)2κn

if − κt ≤ x ≤ κt,

0 otherwise,
(3.2)

K(t, x) =

∞
n=0

Ln(t, x), and (3.3)

(K ⋆ L0) (t, x) = K(t, x)− L0(t, x). (3.4)

Moreover, there are non-negative functions Bn(t) such that for all n ∈ N, the function Bn(t) is
nondecreasing in t, and Ln(t, x) ≤ L0(t, x)Bn(t) for all (t, x) ∈ R∗

+ × R, and

∞
n=1

(Bn(t))
1/m < +∞, for all m ∈ N∗.

Proof. Formula (3.2) clearly holds for n = 0. By induction, suppose that it is true for n. Then
we evaluate Ln+1(t, x) from the definition and a change of variables (see Fig. 2):

Ln+1(t, x) = (L0 ⋆ Ln) (t, x) =
λ2n+4

23n+4(n!)2κn

1
2κ

 x−κt

0
duun

 x+κt

0
dwwn

=
λ2(n+1)+2


(κt)2 − x2

n+1

23(n+1)+2((n + 1)!)2κn+1
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Fig. 3. Illustration of the proof of Lemma 3.2.

for −κt ≤ x ≤ κt , and Ln+1(t, x) = 0 otherwise. This proves (3.2). The series in (3.3)
converges to K(t, x; κ, λ) by (1.3) and (1.4). As a direct consequence, we have (3.4). Take

Bn(t) =
λ2n(κt)2n

23n(n!)2κn , which is non-negative and nondecreasing in t . Then clearly, Ln(t, x) ≤

L0(t, x)Bn(t). To show the convergence, by the ratio test, for all m ∈ N∗, we have that

(Bn(t))1/m

(Bn−1(t))1/m
=


λ
√
κt

2
√

2

 2
m


1
n

 2
m

→ 0,

as n → ∞. This completes the proof of Proposition 3.1. �

3.2. A proposition used for L p(Ω)-continuity

We need some notation: for β ∈]0, 1[, τ > 0, α > 0 and (t, x) ∈ R∗
+ × R, define

Bt,x,β,τ,α :=


t ′, x ′


∈ R∗
+ × R : βt ≤ t ′ ≤ t + τ,

x − x ′
 ≤ α


. (3.5)

Lemma 3.2. Let τ = 1/2 and α = κ/2. Fix β ∈]0, 1[ and (t, x) ∈ R∗
+ × R. Then for all

t ′, x ′


∈ Bt,x,β,τ,α and all (s, y) ∈ [0, t ′[×R,Gκ(t ′ − s, x ′
− y) ≤ Gκ(t + 1 − s, x − y).

Proof. See Fig. 3. The gray box is the set Bt,x,β,τ,α . Clearly, we need α/κ + τ = 1. Therefore,
we can choose τ = 1/2 and α = κ/2. �

For p ≥ 2 and X ∈ L2 (R+ × R, L p(Ω)), set

∥X∥
2
M,p :=


R∗

+×R
dsdy ∥X (s, y)∥2

p < +∞.

Let P p denote the closure in L2 (R+ × R, L p(Ω)) of simple processes (see [37]) with respect to
∥·∥M,p. According to Itô’s isometry,


XdW is a well-defined Walsh integral for all elements

of P2.
The next proposition is useful in particular for checking L p(Ω)-continuity of the random field

I (t, x) in (2.1).

Proposition 3.3. Suppose that for some even integer p ∈ [2,+∞[, a random field Y =
Y (t, x) : (t, x) ∈ R∗

+ × R


has the following properties:

(i) Y is adapted and jointly measurable;
(ii) for all (t, x) ∈ R∗

+ × R, ∥Y (·, ◦)Gκ(t − ·, x − ◦)∥2
M,p < +∞.
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Then for each (t, x) ∈ R∗
+ × R, Y (·, ◦)Gκ(t − ·, x − ◦) ∈ P2, the following Walsh integral

w(t, x) =


]0,t[×R

Gκ (t − s, x − y) Y (s, y)W (ds, dy)

is well-defined and the resulting random field w is adapted. Moreover, w is L p(Ω)-continuous
over R∗

+ × R.

Proof. The proof of this proposition is similar, but simpler, than that of [9, Proposition 3.4].
The main difference is the proof of the L p(Ω)-continuity statement. In particular, for two points
(t, x),


t ′, x ′


∈ R+ × R, denote

(t∗, x∗) =


t ′, x ′


if t ′ ≤ t,

(t, x) if t ′ > t,
and


t̂, x̂


=


(t, x) if t ′ ≤ t,
t ′, x ′


if t ′ > t.

Choose β ∈]0, 1[, τ = 1/2 and α = κ/2. Fix (t, x) ∈ R∗
+ × R. Let B := Bt,x,β,τ,α be the set

defined in (3.5). Assume that

t ′, x ′


∈ B. By [9, Lemma 3.3], we have thatw(t, x)− w


t ′, x ′

p
p

≤ 2p−1z p
p

 t∗

0
ds


R
dy ∥Y (s, y)∥2

p


Gκ(t − s, x − y)− Gκ(t

′
− s, x ′

− y)
2p/2

+ 2p−1z p
p

 t̂

t∗
ds


R
dy ∥Y (s, y)∥2

p G2
κ


t̂ − s, x̂ − y

p/2

≤ 2p−1z p
p

L1(t, t ′, x, x ′)

p/2
+ 2p−1z p

p

L2(t, t ′, x, x ′)

p/2
.

We first consider L1. By Lemma 3.2,
Gκ (t − s, x − y)− Gκ


t ′ − s, x ′

− y
2

≤ 4G2
κ (t + 1 − s, x − y) ,

and the left-hand side converges pointwise to 0 for almost all (t, x) as (t ′, x ′) → (t, x). Further,
[0,t∗]×R

dsdyG2
κ (t + 1 − s, x − y) ∥Y (s, y)∥2

p ≤ ∥Y (·, ◦)Gκ(t + 1 − ·, x − ◦)∥2
M,p ,

which is finite by (ii). Hence, by the dominated convergence theorem,

lim
(t ′,x ′)→(t,x)

L1(t, t ′, x, x ′) = 0.

Similarly, for L2, by Lemma 3.2,

G2
κ


t̂ − s, x̂ − y


≤ G2

κ (t + 1 − s, x − y) .

By the monotone convergence theorem, lim(t ′,x ′)→(t,x) L2(t, t ′, x, x ′) = 0, because
[t∗,t̂]×R

dsdyG2
κ (t + 1 − s, x − y) ∥Y (s, y)∥2

p ≤ ∥Y (·, ◦)Gκ(t + 1 − ·, x − ◦)∥2
M,p

is finite by (ii). This completes the proof of Proposition 3.3. �
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3.3. One lemma on the initial data

In a Picard iteration scheme, the initial data enter already into the very first step, and the
next lemma will be needed. For g ∈ L2

loc (R) and µ ∈ M (R), define two nondecreasing
functions:

Ψg(x) =

 x

−x
dyg2(y), and Ψ∗

µ(x) = (|µ| ([−x, x]))2 , for all x ≥ 0. (3.6)

Lemma 3.4. If g ∈ L2
loc (R) and µ ∈ M (R), then for all v ∈ R and (t, x) ∈ R+ × R,

v2
+ J 2

0


⋆ G2

κ


(t, x) ≤

κt2

4


v2

+ 3Ψ∗
µ (|x | + κt)


+

3
16

tΨg (|x | + κt) < +∞.

Moreover, for all v ∈ R and all compact sets K ⊆ R+ × R,

sup
(t,x)∈K


v2

+ J 2
0


⋆ G2

κ


(t, x) < +∞.

Proof. Suppose t > 0. Notice that |(µ ∗ Gκ(s, ·))(y)| ≤ |µ| ([y − κs, y + κs]), and so, recall-
ing (1.2),

v2
+ J 2

0


⋆ G2

κ


(t, x) =

1
4


v2


Λ(t,x)
dsdy +


Λ(t,x)

dsdy J 2
0 (s, y)


≤

1
4


v2κt2

+
3
4

 t

0
ds
 x+κ(t−s)

x−κ(t−s)
dy

g2(y + κs)+ g2(y − κs)

+ 4|µ|
2 ([y − κs, y + κs])


.

Clearly, for all (s, y) ∈ Λ(t, x), by (3.6),

|µ|
2 ([y − κs, y + κs]) ≤ |µ|

2 ([x − κt, x + κt]) ≤ Ψ∗
µ (|x | + κt) .

The integral for g2 can be easily evaluated by the change of variables in Fig. 2: t

0
ds
 x+κ(t−s)

x−κ(t−s)


g2(y + κs)+ g2(y − κs)


dy

=
1

2κ


I∪I I∪I I I


g2(u)+ g2(w)


dudw

≤
1

2κ

 x+κt

x−κt
dw


−x+κt

−x−κt
du


g2(u)+ g2(w)


≤ tΨg(|x | + κt),

where I, I I and I I I denote the three regions in Fig. 2 and Ψg is defined in (3.6). Therefore,
v2

+ J 2
0


⋆ G2

κ


(t, x) ≤

1
4


v2

+ 3Ψ∗
µ (|x | + κt)


κt2

+
3
4

t Ψg (|x | + κt)


< +∞.
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(a) The case where |x − x ′
| ≥ κ(t + t ′) no

intersection between two cones.
(b) The case where |x − x ′

| ≤ κ(t + t ′) and two
cones have partial intersection.

(c) The case where |x − x ′
| ≤ κ(t + t ′) and small

cone is a subset of the big one.

Fig. 4. The two lightly shaded regions denote the support of the functions (s, z) → Gκ (t − s, x − z) and (s, z) →

Gκ

t ′ − s, y′

− z

, respectively.

Finally, let a = sup

|x | + κt : (t, x) ∈ K


, which is finite because K is a compact set. Then,

sup
(t,x)∈K


v2

+ J 2
0


⋆ G2

κ


(t, x) ≤

κa2

4


v2

+ 3Ψ∗
µ (a)


+

3
16

aΨg (a) < +∞,

which completes the proof of Lemma 3.4. �

3.4. Proof of Theorems 2.3 and 2.7

Lemma 3.5. Recall the definitions of Tκ(t, t ′, x) and Xκ(x, x ′, t) in (1.6) and (1.7), respectively.
For all t ′ ≥ t ≥ 0, and x, x ′

∈ R, by denoting T := Tκ

t, t ′, x ′

− x


and X := Xκ(x, x ′, t ′ − t),
we have that

Gκ(t − s, x − z)Gκ


t ′ − s, x ′

− z


=
1
2

Gκ (T − s, X − z) , (3.7)
R

dzGκ(t, x − z)Gκ(t
′, x ′

− z) =
κ

2
T, (3.8)

R+×R
dsdzGκ(t − s, x − z)Gκ


t ′ − s, x ′

− z


=
κ

4
T 2. (3.9)

Proof. Recall that Λ(t, x) is the space–time cone defined in (3.1). Since Gκ(t − s, x − y) =
1
2 1{Λ(t,x)} (s, y), multiplying by a factor 4 on both sides of (3.7), this equality reduces to a
geometric property of the intersection of the two space–time cones; see Fig. 4. We leave the
elementary proof to the reader. The other two equalities (3.8) and (3.9) are direct consequences
of (3.7). �
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Proof of Theorem 2.3. The proof follows the same six steps as those in the proof of [9, Theorem
2.4] with some minor changes:

(1) Both proofs rely on the computation of the kernel function K(t, x). Here, Proposition 3.1
plays the role of [9, Proposition 2.2].

(2) In the Picard iteration scheme (i.e., Steps 1–4 in the proof of [9, Theorem 2.4]), one needs to
check the L p(Ω)-continuity of the stochastic integral, which then guarantees that at the next
step, the integrand is again in P2, via [9, Proposition 3.1]. Because of the different natures
of the heat and wave kernels, we use here Proposition 3.3 for this instead of [9, Proposition
3.4].

(3) In the first step of the Picard iteration scheme, the following property is useful: For all
compact sets K ⊆ R+ × R,

sup
(t,x)∈K


1 + J 2

0


⋆ G2

κ


(t, x) < +∞.

For the heat equation, this property is discussed in [9, Lemma 3.9]. Here, Lemma 3.4 gives
the desired result with minimal requirements on the initial data. This property, together with
the calculation of the function K in Proposition 3.1, ensures that all the L p(Ω)-moments of
u(t, x) are finite. This property is also used to establish uniform convergence of the Picard
iteration scheme, hence L p(Ω)-continuity of (t, x) → I (t, x).

(4) As for the two-point correlation function, for t ′ ≥ t ≥ 0 and x, x ′
∈ R,

E

u(t, x)u(t ′, x ′)


= J0(t, x)J0(t

′, x ′)+

 t

0
ds


R
dz ∥ρ(u(s, z))∥2

2

× Gκ(t − s, x − z)Gκ


t ′ − s, x ′

− z

.

Unless (2.4) holds, since we are going to bound ρ above or below via (2.2) or (2.3), we may as
well replace ∥ρ(u(s, z))∥2

2 by λ2(ς2
+∥u(s, z)∥2

2) and then apply the moment formula (2.10). To
calculate the double integral, replace the product of two Gκ functions by λ−2 L0(T − s, X − z)
using Lemma 3.5 and use the definitions of H(t) in (1.5) to see that it is equal to

ς2
+ J 2

0 + (J 2
0 ⋆ K)+ ς2(1 ⋆ K)


⋆ L0


(T, X).

Apply property (3.4) to see that this is equal to (J 2
0 ⋆ K)(T, X) + ς2 H(T ). This gives (2.11),

together with (2.7) and (2.9). This completes the proof of Theorem 2.3. �

The next two lemmas are needed already for formula (1.5).

Lemma 3.6. For a ≠ 0 and t ≥ 0,
 t

0 ds cosh(as)(t − s) = a−2 (cosh(at)− 1) ,
 t

0 ds sinh(as)
(t − s) = a−2 (sinh(at)− at), and

 t
0 ds sinh(as)(t − s)2 = a−3


2 cosh(at)− a2t2

− 2

.

Lemma 3.7. For t ≥ 0 and x ∈ R, we have that


R dx K(t, x) = |λ|(κ/2)1/2 sinh

|λ|(κ/2)1/2t


and (1 ⋆ K) (t, x) = cosh


|λ|(κ/2)1/2t


− 1.

Proof. By a change of variable,
R

dx K(t, x) = 2


|λ|
√
κ/2t

0
dy
λ2

4

√
2κ

|λ|

y
κt2λ2/2 − y2

I0(y).

Then the first statement follows from [23, (6) on p. 365] with ν = 0, σ = 1/2 and a =

|λ|(κ/2)1/2t . The second statement is a simple application of the first. �



1620 L. Chen, R.C. Dalang / Stochastic Processes and their Applications 125 (2015) 1605–1628

Proof of Corollary 1.1. In this case, J0(t, x) = w + κwt . Formula for (1.8) follows from the
moment formula (2.11) and the integrals in Lemmas 3.7 and 3.6. �

Proof of Corollary 1.2. In this case, J0(t, x) = Gκ(t, x) and so λ2 J 2
0 (t, x) = L0(t, x). By

(3.7), we know that J0(t, x)J0(t ′, x ′) = J 2
0 (T, X). Hence, by (2.11) and Proposition 3.1,

E

u(t, x)u(t ′, x ′)


= J 2

0 (T, X)+


J 2

0 ⋆ K

(T, X)+ ς2 H (T )

= λ−2 K (T, X)+ ς2 H (T ) ,

which completes the proof of Corollary 1.2. �

Proof of Theorem 2.7. Clearly, J0(t, x) = w + κwt .

(1) If |ς | + |w| + |w| = 0, then J0(t, x) ≡ 0 and ρ(0) = 0, so u(t, x) ≡ 0 and the bound (2.12)
is trivially true. If |ς | + |w| + |w| ≠ 0, then by (2.6), for all even integers p ≥ 2,

∥u(t, x)∥2
p ≤ 2 (w + κwt)2 +


2 (w + κwt)2 + ς2

 H p(t).

Hence, by (1.5), m p ≤ ap,ς z pLρ
√
κ/2p/2. Then by (2.5) and the fact that z2 = 1 and

z p ≤ 2
√

p for p ≥ 2, we obtain (2.12).
(2) Note that the term 2 (w + κwt)2 + ς2 on the r.h.s. of the above inequality does not vanish

since |ς | + |w| + |w| ≠ 0. By (2.8) and Corollary 1.1,

∥u(t, x)∥2
2 ≥ −ς2

−
4κw2

l2ρ
+


w2

+ ς2
+

4κw2

l2ρ


cosh


|lρ |

κ/2t


.

Clearly, |ς | + |w| + |w| ≠ 0 implies that m2 ≥ |lρ |
√
κ/2.

Part (3) is a consequence of (1) and (2). This completes the proof of Theorem 2.7. �

4. Proof of Theorem 2.9 (growth indices)

It will follow from Theorem 2.3 that we will be able to study separately the contributions of the
initial position and the initial velocity. We consider the case g ≠ 0 and µ ≡ 0 in Proposition 4.3,
the case g ≡ 0 and µ ≠ 0 in Proposition 4.6, then we combine the two to prove Theorem 2.9.
We begin with some technical lemmas. Recall that H(t) is the Heaviside function.

Lemma 4.1. Let f (t, x) =
1
2


e−β|x−κt |

+ e−β|x+κt |


H(t). Then we have the following bounds:

(1) Set σ :=


β2 +

λ2

2κ . For β > 0, t ≥ 0 and |x | ≥ κt ,

( f ⋆ K) (t, x) ≤
λ2t

2(σ − β)
e−β|x |+κσ t .

(2) For (t, x) ∈ R∗
+ × R, β > 0 and a, b ∈]0, 1[,

( f ⋆ K) (t, x) ≥



1
2

e−βκt cosh(β|x |)

I0

λ2(κ2t2 − x2)

2κ

− 1

 if |x | ≤ κt,

λ2e−β|x |

2(1 − a2)β2κ
I0

λ2(1 − a2)

2κ
bκt

 g(t ; a, b, β, κ) if |x | ≥ κt,
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where the function g (t ; a, b, β, κ) is equal to

a cosh (abβκt) cosh ((1 − b)βκt)− a cosh (aβκt)+ sinh ((1 − b)βκt) sinh (abβκt) .

Proof. (1) Because f (t, ◦) and K(t, ◦) are even functions, it suffices to consider the case
x ≤ −κt . In this case, y ≤ −κs implies that f (s, y) =

1
2


eβ(y−κs)

+ eβ(y+κs)


H(s). Because

I0(z) ≤ cosh(z) ≤ e|z|, for all z ∈ R, (4.1)

which can be seen from the formula I0(z) =
1
π

 π
0 dθ cosh(z cos(θ)) (see [29, (10.32.1)]),

( f ⋆ K) (t, x) ≤
λ2

4

 t

0
ds
 x+κ(t−s)

x−κ(t−s)
dy

1
2


eβ(y−κs)

+ eβ(y+κs)


× exp

λ2[κ2(t − s)2 − (x − y)2]

2κ


=
λ2

8

 t

0
ds


eβ(x−κ(t−s))
+ eβ(x+κ(t−s))


×

 κs

−κs
dy exp

−βy +


λ2[κ2s2 − y2]

2κ

 .
The function ψ(y) := −βy +


λ2(κ2s2

− y2)/(2κ)
1/2

achieves its maximum at y = −σ−1βκs
∈ [−κs, κs], and max|y|≤κs ψ(y) = σκs, so

( f ⋆ K) (t, x) ≤
λ2κt

4

 t

0
ds


eβ(x−κt)+κ(σ+β)s
+ eβ(x+κt)+κ(σ−β)s


≤

λ2t

4(σ − β)


eβ(x−κt)+κ(σ+β)t

+ eβ(x+κt)+κ(σ−β)t


=
λ2t

2(σ − β)
eβx+κσ t .

(2) We consider two cases. Case I: |x | ≤ κt . As shown in Fig. 2, we decompose the
space–time convolution into three parts Si corresponding to the three integration regions Di , i =

1, 2, 3:

( f ⋆ Gκ) (t, x) =

3
i=1

Si =

3
i=1

1
2


Di

dsdy f (s, y).

Clearly, ( f ⋆ K) (t, x) ≥ S3. Because

f (s, y) ≥
1
2


e−β(κt−x)

+ e−β(κt+x)

, for all (s, y) ∈ D3,

we see that

S3 ≥
2

λ2 e−βκt cosh (βx) (L0 ⋆ K) (t, x).

Then apply (3.4).
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Case II: |x | ≥ κt . Similar to the proof of part (1), one can assume that x ≤ −κt . Then

( f ⋆ K) (t, x) =
λ2

8

 t

0
ds
 κs

−κs
dy I0

λ2(κ2s2 − y2)

2κ


×


eβ(x−y−κ(t−s))

+ eβ(x−y+κ(t−s))

.

Fix a, b ∈]0, 1[. Then

( f ⋆ K) (t, x) ≥
λ2

4

 t

bt
ds
 aκs

−aκs
dy I0

λ2(κ2s2 − y2)

2κ

 eβ(x−y) cosh(βκ(t − s))

≥
λ2eβx

4
I0

λ2(1 − a2)

2κ
bκt

 t

bt
ds
 aκs

−aκs
dy cosh(βκ(t − s))e−βy .

Since  t

bt
ds
 aκs

−aκs
dy cosh(βκ(t − s))e−βy

=
2
β

 t

bt
ds cosh(βκ(t − s)) sinh(aβκs),

part (2) is proved by an application of the following integral: For a ≠ c, t > 0 and b ∈ [0, 1], t

bt
ds cosh (a(t − s)) sinh (cs) =


a2

− c2
−1 

c cosh(bct) cosh (a(1 − b)t)

− c cosh(ct)+ a sinh(bct) sinh (a(1 − b)t)

,

which can be proved by using the formula cosh(x) sinh(y) =
1
2 (sinh(x + y)+ sinh(−x + y)).

This completes the proof of Lemma 4.1. �

Lemma 4.2. The kernel function K(t, x) defined in (1.4) is strictly increasing in t for x ∈ R
fixed and decreasing in |x | for t > 0 fixed. Moreover, for all (s, y) ∈ [0, t] × R, we have that

λ2

2
Gκ (s, y) ≤ K (s, y) ≤

λ2

2
I0


|λ|

κ/2t


Gκ (s, y) .

Proof. The first statement is true by (1.3). As for the inequalities, the upper bound follows from
the first part. The lower bound is clear since I0(0) = 1 by (1.3). �

Proposition 4.3. Suppose that µ ≡ 0. Fix β > 0. Then:

(1) Suppose |ρ(u)| ≤ Lρ |u| with Lρ ≠ 0 and let g(x) be a measurable function such that for
some constant C > 0, |g(x)| ≤ Ce−β|x | for almost all x ∈ R. Then (2.13) holds with β1 ∧β2
there replaced by β.

(2) Suppose |ρ(u)| ≥ lρ |u| with lρ ≠ 0 and let g(x) be a measurable function such that for some
constant c > 0, |g(x)| ≥ ce−β|x | for almost all x ∈ R. Then (2.14) holds with β ′

1 ∧ β ′

2 there
replaced by β.

In particular, if g(x) satisfies both Conditions (1) and (2), and ρ(u) = λu with λ ≠ 0,
then (2.15) holds.
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Proof. (1) Let J0(t, x) =
1
2 (g(x − κt)+ g(x + κt)) H(t). By the assumptions on g(x),

|J0(t, x)|2 ≤
C2

2


e−2β|x−κt |

+ e−2β|x+κt |


H(t), for almost all (t, x) ∈ R+ × R.

We first consider the case p > 2. By the moment bound (2.6) and Lemma 4.1 (1), for |x | ≥ κt ,

∥u(t, x)∥2
p ≤ 2J 2

0 (t, x)+ C ′t exp (−2β|x | + κσ t) ,

for some constant C ′ > 0, where σ :=


4β2

+ (2κ)−1a2
p,ς z2

pL2
ρ

1/2
. Consider α > κ . Because

the supremum over |x | ≥ αt of the right-hand side is attained at |x | = αt ,

lim
t→∞

1
t

sup
|x |≥αt

log ∥u(t, x)∥p
p ≤ −2αβ + κσ, for α > κ.

Notice that −2αβ + κσ < 0 ⇔ α > κ σ
2β . Since κ σ

2β > κ , we conclude that λ(p) ≤ κ σ
2β , which

is the formula in (2.13) (with β1 ∧ β2 there replaced by β) for p > 2. For the case p = 2, we
simply replace z p and ap,ς by 1 (see (2.5)).

(2) Note that λ(p) ≥ λ(2) and ∥u∥p ≥ ∥u∥2 for p ≥ 2, so we only need to consider p = 2.
Assume first that ρ(u) = λu. Since |g(x)| ≥ ce−β|x | a.e.,

J 2
0 (t, x) ≥

c2

4


e−2β|x−κt |

+ e−2β|x+κt |

.

If |x | ≤ κt , by (2.8), Lemmas 4.2 and 4.1,

∥u(t, x)∥2
2 ≥


J 2

0 ⋆ K

(t, x) ≥

c2

4
e−2βκt cosh(2β|x |)

I0

λ2(κ2t2 − x2)

2κ

− 1

 .
Then use the following asymptotic formula for I0(x) (see, [29, (10.30.4)]):

I0(x) ∼
ex

√
2πx

, as x → ∞, (4.2)

to see that for 0 ≤ α < κ ,

lim
t→+∞

1
t

sup
|x |≥αt

log ∥u(t, x)∥2
2 ≥ −2βκ + 2βα + |λ|


κ2 − α2

2κ
.

Then

h(α) := −2βκ + 2βα +
|λ|

√
2κ


κ2 − α2 ≥ 0 ⇔ κ

8κβ2
− λ2

8κβ2 + λ2 ≤ α ≤ κ.

As α tends to κ from the left side, h(α) remains positive. Therefore, λ(2) ≥ κ .
If x ≤ −κt , again, by Lemma 4.1,

∥u(t, x)∥2
2 ≥

c2λ2e−2β|x |

4(1 − a2)(2β)2κ
I0

λ2(1 − a2)

2κ
bκt

 g(t ; a, b, 2β, κ),

for all a, b ∈]0, 1[.

For large t , replace both cosh(Ct) and sinh(Ct) by exp(Ct)/2, with C ≥ 0, to see that

g(t ; a, b, 2β, κ) ≥ C ′ exp (2(1 + (a − 1)b)tβκ) ,
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for some constant C ′ > 0. Hence, for α > κ , by (4.2),

lim
t→∞

1
t

sup
|x |≥αt

log ∥u(t, x)∥2
2 ≥


λ2(1 − a2)

2κ
bκ − 2βα + 2(1 − (1 − a)b)βκ.

Solve the inequality

h(α) :=


λ2(1 − a2)

2κ
bκ − 2βα + 2(1 − (1 − a)b)βκ > 0

to get

α <

λ2(1 − a2)

2κ
b

2β
+ 1 − (1 − a)b

 κ.
Since a ∈]0, 1[ is arbitrary, we can choose

a := arg max
a∈]0,1[

λ2(1 − a2)

2κ
b

2β
+ 1 − (1 − a)b

 =


1 +

λ2

8κβ2

−1/2

.

In this case, the critical growth rate is α = bκ

1 + λ2/(8κβ2)

1/2
+ (1 − b)κ . Finally, since b

can be arbitrarily close to 1, we have that λ(2) ≥ κ

1 + λ2/(8κβ2)

1/2
, and for the general case

|ρ(u)| ≥ lρ |u|, we have that λ(p) ≥ λ(2) ≥ κ

1 + l2ρ/(8κβ

2)
1/2

. This completes the proof of
Proposition 4.3. �

Now, let us consider the case where g(x) ≡ 0. We shall first study the case where µ(dx) =

e−β|x |dx with β > 0. In this case, J0(t, x) is given by the following lemma.

Lemma 4.4. Suppose that µ(dx) = e−β|x |dx with β > 0. For all (t, x) ∈ R+ × R and z > 0,
µ ∗ 1{|·|≤z}


(x) =


2β−1e−β|x | sinh(βz) |x | ≥ z,
2β−1 1 − e−βz cosh(βx)


|x | ≤ z.

In particular, we have that

J0(t, x) =


β−1e−β|x | sinh(βκt) |x | ≥ κt,
β−1 1 − e−βκt cosh(βx)


|x | ≤ κt.

The proof is straightforward, and is left to the reader (see also [8, Lemma 4.4.5]).

Lemma 4.5. Suppose that µ ∈ Mβ
G (R) with β > 0. Set h(t, x) = (µ ∗ Gκ(t, ·)) (x) and

σ =

β2

+ (2κ)−1λ2
1/2

. Then for all t ≥ 0 and x ∈ R,

|h(t, x)| ≤ C exp (βκt − β|x |) , with C = 1/2


R
|µ|(dx)eβ|x |,

and

(|h| ⋆ K) (t, x) ≤
λ2t

2(σ − β)
e−β|x |+σκt .
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Proof. Considering the first inequality, observe that

eβ|x |
|(µ ∗ Gκ(t, ·)) (x)| ≤

1
2

 x+κt

x−κt
|µ|(dy)eβ|x |

≤
1
2

 x+κt

x−κt
|µ|(dy)eβ|x−y|eβ|y|

≤
1
2

eβκt
 x+κt

x−κt
|µ|(dy)eβ|y|

≤
1
2

eβκt


R
|µ|(dy)eβ|y|.

For the second inequality, set f (t, x) = eβκt−β|x |. Then by (4.1),

( f ⋆ K) (t, x) =
λ2

4

 t

0
dseβκ(t−s)

 κs

−κs
dy exp

−β|x − y| +


λ2

κ2s2 − y2


2κ


≤
λ2

4

 t

0
dseβκ(t−s)

 κs

−κs
dy exp

−β|x | + β|y| +


λ2

κ2s2 − y2


2κ


≤
λ2

2
e−β|x |

 t

0
dseβκ(t−s)

 κs

0
dy exp

βy +


λ2

κ2s2 − y2


2κ

 .
The function ψ(y) := βy +


λ2

κ2s2

− y2

/(2κ)

1/2
achieves its maximum at y = σ−1βκs ∈

[0, κs], and maxy∈[0,κs] ψ(y) = σκs, so

( f ⋆ K) ≤
λ2κt

2
e−β|x |

 t

0
dseβκ(t−s)+σκs

≤
λ2t

2(σ − β)
e−β|x |+σκt .

This completes the proof. �

Proposition 4.6. Suppose that g ≡ 0. Fix β > 0.

(1) If |ρ(u)| ≤ Lρ |u| with Lρ ≠ 0 and µ ∈ Mβ
G (R), then λ(p) satisfies (2.13) with β1 ∧ β2

there replaced by β.
(2) Suppose that |ρ(u)| ≥ lρ |u| with lρ ≠ 0 and µ(dx) = f (x)dx. If for some constant

c > 0, f (x) ≥ ce−β|x | for all almost all x ∈ R, then (2.14) holds with β ′

1 ∧ β ′

2 there
replaced by β.

In particular, if µ satisfies both Conditions (1) and (2), and ρ(u) = λu with λ ≠ 0, then
(2.15) holds.

Proof. (1) Let p > 2 be an even integer. Let h(t, x) be the function defined in Lemma 4.5.
Notice that the first bound in Lemma 4.5 is satisfied by h2(t, x) provided β is replaced by 2β.
By (2.6) and Lemma 4.5, we see that for some constant C ′ > 0,

∥u(t, x)∥2
p ≤ 2h2(t, x)+ C ′t exp (−2β|x | + κσ t) ,

where σ =


4β2

+ a2
p,ς z2

pL2
ρ/(2κ)

1/2
. Then it is clear that

lim
t→∞

1
t

sup
|x |≥αt

log ∥u(t, x)∥p
p ≤ −2βα + κσ.

Solve the inequality −2βα + κσ > 0 to get λ(p) ≤ κ σ
2β . For the case p = 2, simply replace z p

and ap,ς by 1.
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(2) Suppose that f (x) ≥ e−β|x | for almost all x ∈ R (i.e., set c = 1). By (2.8) and (2.10),
we may only consider the case where ρ(u) = λu. Denote J0(t, x) = (e−β|·|

∗ Gκ(t, ·))(x).
We first consider the case where |x | ≤ κt . As shown in Fig. 2, split the integral that defines
J 2

0 ⋆ K

(t, x) over the three regions I, II, and III, so that

∥u(t, x)∥2
2 ≥


J 2

0 ⋆ K

(t, x) = S1 + S2 + S3 ≥ S3.

For arbitrary a, b ∈]0, 1[, we see that

S3 ≥
λ2

4

 t

bt
ds
 aκs

−aκs
dy J 2

0 (t − s, x − y) I0

λ2

(κs)2 − y2


2κ


≥
λ2

4

 t

bt
ds I0

λ2

1 − a2


2κ

κs

 aκs

−aκs
dy J 2

0 (t − s, x − y)

≥
λ2

4
I0

λ2

1 − a2


2κ

κbt

 t

bt
ds
 abκt

−abκt
dy J 2

0 (t − s, x − y) .

Clearly, for (s, y) in Region III of Fig. 2, |x − y| ≤ κ(t − s) and so by Lemma 4.4,

J0 (t − s, x − y) =


1 − e−βκ(t−s) cosh (β(x − y))


/β.

Using the inequalities (a + b)2 ≥
a2

2 − b2 and cosh2(x) =
1
2 (cosh(2x)+ 1) ≥

1
2 cosh(2x),

J 2
0 (t − s, x − y) ≥

1

4β2 e−2βκ(t−s) cosh(2β(x − y))−
1

β2 .

Hence, t

bt
ds
 abκt

−abκt
dy J 2

0 (t − s, x − y)

≥


1 − e−2(1−b)βκt


cosh(2βx) sinh(2abβκt)

8β4κ
−

2a(1 − b)bκt2

β2 .

Therefore, by (4.2),

lim
t→+∞

1
t

sup
|x |≥αt

log ∥u(t, x)∥2
2 ≥ 2βα + 2abβκ + b|λ|


κ/2


1 − a2 > 0, (4.3)

for α ≤ κ and all a, b ∈]0, 1[, which implies that λ(2) ≥ κ . As for the case where |x | ≥ κt , for
all a, b ∈]0, 1[, by Lemma 4.4,

∥u(t, x)∥2
2 ≥


J 2

0 ⋆ K

(t, x)

=
λ2

16β2

 t

0
ds sinh2(βκ(t − s))

 κs

−κs
dye−2β|x−y| I0

λ2(κ2s2 − y2)

2κ


≥
λ2e−2β|x |+2aκbtβ

32β3


sinh(2(1 − b)βκt)

4βκ
−

1
2
(1 − b)t


I0

λ2(1 − a2)

2κ
bκt

 .
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Therefore, for α > κ , we obtain the same inequality as (4.3). The rest of the argument is
exactly the same as the proof of part (2) of Proposition 4.3. This completes the proof of
Proposition 4.6. �

Proof of Theorem 2.9. Let J0,1(t, x) (resp. J0,2(t, x)) be the homogeneous solutions obtained
with the initial data g and 0 (resp. 0 and µ). Clearly, J0(t, x) = J0,1(t, x) + J0,2(t, x). For (1),
we use the fact that J 2

0 (t, x) ≤ 2J 2
0,1(t, x) + 2J 2

0,2(t, x). By (2.6), we simply choose the larger
of the upper bounds between Propositions 4.3(1) and 4.6(1). As for (2), because both g and µ
are assumed nonnegative, J 2

0 (t, x) ≥ J 2
0,1(t, x) + J 2

0,2(t, x). Hence, by (2.8), we only need to
take the larger of the lower bounds between Propositions 4.3(2) and 4.6(2). Part (3) is a direct
consequence of (1) and (2). When the initial data have compact support, both (1) and (2) hold
for all βi > 0 with i = 1, 2. Then letting these βi ’s tend to +∞ proves (4). This completes the
proof of Theorem 2.9. �
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[36] M. Sanz-Solé, M. Sarrà, Path properties of a class of Gaussian processes with applications to spde’s, in: Stochastic

Processes, Physics and Geometry: New Interplays, I (Leipzig, 1999), Amer. Math. Soc., Providence, RI, 2000,
pp. 303–316.

[37] J.B. Walsh, An introduction to stochastic partial differential equations, in: École d’été de Probabilités de Saint-Flour,
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